Geothermal

GEO1
GEO2

HOW GEOTHERMAL SYSTEMS WORK

Geothermal Heating and Coolingtucson_0130

Geothermal Heating and Cooling Systems provide space conditioning — heating,     cooling, and humidity control. They may also provide water heating — either to supplement or replace conventional water heaters. Geothermal Heating and Cooling Systems work by moving heat, rather than by converting chemical energy to heat like in a furnace. Every Geothermal Heating and Cooling Systems has three major subsystems or parts: a geothermal heat pump to move heat between the building and the fluid in the earth connection, an earth connection for transferring heat between its fluid and the earth, and a distribution subsystem for delivering heating or cooling to the building. Each system may also have a desuperheater to supplement the building’s water heater, or a full-demand water heater to meet all of the building’s hot water needs.

Geothermal Heat Pump

The geothermal heat pump is packaged in a single cabinet, and includes the compressor, loop-to-refrigerant heat exchanger, and controls. Systems that distribute heat using ducted air also contain the air handler, duct fan, filter, refrigerant-to-air heat exchanger, and condensate removal system for air conditioning. For home installations, the geothermal heat pump cabinet is usually located in a basement, attic, or closet. In commercial installations, it may be hung above a suspended ceiling or installed as a self-contained console.

Distribution Subsystem

Most residential geothermal systems use conventional ductwork to distribute hot or cold air and to provide humidity control. (A few systems use water-to-water heat pumps with one or more fan-coil units, baseboard radiators, or under-floor circulating pipes.) Properly sized, constructed, and sealed ducts are essential to maintain system efficiency. Ducts must be well insulated and, whenever possible, located inside of the building’s thermal envelope (conditioned space).

Geothermal heating and cooling systems for large commercial buildings, such as schools and offices, often use a different arrangement. Multiple heat pumps (perhaps one for each classroom or office) are attached to the same earth connection by a loop inside the building. This way, each area of the building can be individually controlled. The heat pumps on the sunny side of the building may provide cooling while those on the shady side are providing heat. This arrangement is very economical, as heat is merely being transferred from one area of the building to another, with the earth connection serving as the heat source or heat sink only for the difference between the building’s heating and cooling needs.